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Motivation

Current detailed simulators are slow (~200 KIPS)

Simulation performance wall
More complex targets (multicore, memory hierarchy, ...)

Hard to parallelize

Problem: Time to simulate 1000 cores @ 2GHz for 1s at
200 KIPS: 4 months
200 MIPS:

Alternatives?
FPGAs: , good progress, but still hard to use

Simplified /abstract models: but inaccurate
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Bound-weave to scale parallel simulation

Lightweight user-level virtualization to bridge user-level /full-

system gap



ZSim Techniques

Three techniques to make 1000-core simulation practical:

Detailed DBT-accelerated core models to speed up sequential
simulation

Bound-weave to scale parallel simulation

Lightweight user-level virtualization to bridge user-level /full-
system gap

ZSim achieves high performance and accuracy:
Simulates 1024-core systems at 10s-1000s of MIPS
100-1000x faster than current simulators

Validated against real Westmere system, avg error ~10%
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This Presentation is Also a Demo!

ZSim is simulating these slides
OOO Westmere cores running at 2 GHz

3-level cache hierarchy

Will illustrate other features as | present them

ZSim performance relevant when busy ldle (< 0.1 .
A Running on 2-core laptop CPU @ 1.7 GHz e (< 0.1 cores active) .
~12x slower than 16-core server @ 2.6 GHz
0.1 < cores active < 0.9

Busy (> 0.9 cores active) .

Total cycles and instructions Current simulation speed and basic stats
simulated (in billions) (updated every 500ms)
Cycles: 1.4 B Sim Speed: 172.4 MCPS Avg Act Cores: 1.00
Instrs: 1.3 B Sim Speed: 169.2 MIPS Avg Core IPC: ©0.98
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Main Design Decisions

1 General execution-driven simulator:

Timing

model

Emulation? (e.g., gem5, MARSSx86) Cycle-driven?
[Instrumentationq (e.g., Graphite, Sniper) Event-driven?
Dynamic Binary Translation (Pin) DBT-accelerated,
v’ Functional model “for free” instruction-driven core
X Base ISA = Host ISA (x86) +

Event-driven uncore



Qutline

1 Introduction
1 Detailed DBT-accelerated core models
1 Bound-weave parallelization

11 Lightweight user-level virtualization
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Accelerating Core Models

Shift most of the work to DBT instrumentation phase

Basic block |:> Instrumented basic block + Basic block descriptor
mov  (%rbp), srcx Load (addr = (% rbp) ) Ins%pop decoding

add %rax, $rbx mov  (%rbp), %rc .

mov $rdx, (Srbp) add %rax, $rdx Mop dependenC|es,

ja  40530a Store (addr = (%rbp)) functional units, latency

mov Srdx, (srbp)
BasicBlock (BBLDescriptor)
Ja 10840530a

Front-end delays
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Accelerating Core Models

Shift most of the work to DBT instrumentation phase

Basic block m=) Instrumented basic block + Basic block descriptor
mov (%3rbp), Srcx Load (addr = (%rbp)) Insépop decoding

add %rax, $rbx mov  (%rbp), $rcx .

mov $rdx, (Srbp) add %rax, $rdx Mop dependenC|es,

Ja  40530a Store(addr = (%rbp)) functional units, latency

mov Srdx, (srbp)
BasicBlock (BBLDescriptor)
Ja 10840530a

Front-end delays

Instruction-driven models: Simulate all stages at once for each
instruction/ Hop
Accurate even with OOOQ if instruction window prioritizes older instructions

, but more complex than cycle-driven

11



Detailed OOO Model

1 OOO core modeled and validated against Westmere

|
|
|

— N

)

—

Main Features

Wrong-path fetches
Branch Prediction

Front-end delays (predecoder, decoder)
Detailed instruction to Hop decoding

Rename /capture stalls
IW with limited size and width

Functional unit delays and contention
Detailed LSU (forwarding, fences,...)

Reorder buffer with limited size and width

12
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Commit
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Detailed OOO Model

1 OOO core modeled and validated against Westmere

Fundamentally Hard to Model

Wrong-path execution

In Westmere, wrong-path instructions don’t

affect recovery latency or pollute caches
Skipping OK

Not Modeled (Yet)

 Fetch
Decode
e

Rarely used
instructions

BTB
LSD
TLBs

)
—

13



Single-Thread Accuracy

14

1 29 SPEC CPU2006 apps for 50 Billion instructions
7 Real: Xeon L5640 (Westmere), 3x DDR3-1333, no HT
0 Simulated: OOO cores @ 2.27 GHz, detailed uncore

0% -0% -0% -0% -0% +1% +1% -1% -1% +5% +5% -6% +6% +8% -8% +8% +8% -9% +9% +10% -10% +12% +14% -14% +15% -16% +18% +24% +26%

D I3 Real
[ Simulated

O 0 a8 N e @ b @ ¢ ot °
SOV O O N E oY o o (T

1 8.5% average IPC error, max 26%, 21 /29 within 10%



Single-Thread Performance
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Single-Thread Performance

Host: E5-2670 @ 2.6 GHz (single-thread simulation)
29 SPEC CPU2006 apps for 50 Billion instructions

90

IPC1-SimpleUncore

——  00O0-DetailedUncore

...........................................................

12 MIPS hmean

5 10 15 20 25 30
Application
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Single-Thread Performance

Host: E5-2670 @ 2.6 GHz (single-thread simulation)
29 SPEC CPU2006 apps for 50 Billion instructions

90 | | | |
80 - IPC1-SimpleUncore | ... ... ./ .. ]
70— 0O00-DetailedUncore| ~ |
E BO [ it
S DOt AT
C a0k 4Q_M_|_l_’_$_hme_q_r_\_
L] SIS 7 ErIets IS SRR ST A
20 o i RS ety
10 : : 12 MIPS hmean

| | |

00 5 10 15 20 25 30

Application ~10-100x faster
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Single-Thread Performance

15
Host: E5-2670 @ 2.6 GHz (single-thread simulation)
29 SPEC CPU2006 apps for 50 Billion instructions
90 | | | |
80 |- IPC1-SimpleUncore | ... ... ./ .. ]
70kl — O00O-DetailedUncore| ,~ |
E BO [
S 5O AT
S a0l 4Q_M_|_l_’_$_hme_q_r_\_
N ool .. % ~3xbetween least and
N 30 : : : : .
| e SR SOTUUURNS AVUS '¥._most detailed models!
10| ai---l-2-lfV-\I-P-$-h§meqn
00 _"l') 1|0 1|5 2|0 2|5 30

Application ~10-100x faster
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1 Introduction
1 Detailed DBT-accelerated core models
1 Bound-weave parallelization

11 Lightweight user-level virtualization
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Parallelization Techniques

o1 Parallel Discrete Event Simulation (PDES):

Divide components across host threads

Execute events from each component
maintaining illusion of full order
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Parallelization Techniques .

o Parallel Discrete Event Simulation (PDES): Host Host

Vi Thread O Thread 1
Divide components across host threads rea rea

Execute events from each component s 15

maintaining illusion of full order

v’ Accurate s

Skew < 10 cycles L |5
X Not scalable

11 Lax synchronization: Allow skews above inter-component
latencies, tolerate ordering violations

v’ Scalable
X |naccurate



Characterizing Interference

Path-altering interference
If we simulate two accesses out of order, their
paths through the memory hierarchy change

GETS A
MISS

o

GETS A
HIT
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Characterizing Interference

18
Path-altering interference Path-preserving interference
If we simulate two accesses out of order, their If we simulate two accesses out of order, their
paths through the memory hierarchy change timing changes but their paths do not

GETS A
MISS

O O

GETSA  GETS A
HIT HIT

GETS A GETS A
MISS MISS

O O

GETS B GETS A GETS B
HIT MISS
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aracterizing Interference o

71 Accesses with path-altering interference with barrier
synchronization every 1K/10K/100K cycles (64 cores):

= =
=] (=]
" [

Fraction of accesses
5
b

w
T

10K accesses
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Characterizing Interference o

71 Accesses with path-altering interference with barrier
synchronization every 1K/10K/100K cycles (64 cores):

=
[=]
[N

[
c.
w
T

10K accesses

Fraction of accesses
=
(=]
b

-~ © o - © © - O -~ © © -~ O - o - O
- 8 =1 — - B — = -

[=3 [=] =
(=1 [=1 (=]
- - —

- — —
barnes blkscholes canneal fft fldanimate lu ocean radix swaptions water

0 Path-altering interference extremely rare in small intervals

0 Strategy:
Simulate path-preserving interference faithfully

Ignore (but optionally profile) path-altering interference



Bound-Weave Parallelization

Divide simulation in small intervals (e.g., 1000 cycles)

Two parallel phases per interval: Bound and weave
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Bound-Weave Parallelization o

01 Divide simulation in small intervals (e.g., 1000 cycles)

o1 Two parallel phases per interval: Bound and weave

Bound phase: Find paths

Weave phase: Find timings

Bound-Weave equivalent to PDES

for path-preserving interference



Bound-Weave Example

21
11 2-core host simulating Mem Cirl 0 Mem Chrl 1
4-core system ——_
. L3 Bank O @ L3 Bank 1 L3 Bank 2 @ L3 Bank 3
o1 1000-cycle intervals — :{;»3«

L2 L2 L2 L2
L juo @ jun L juo @ fun
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Bound-Weave Example

1 2-core host simulating
4-core system

1 1000-cycle intervals

-1 Divide components
among 2 domains

Host Thread O

Host Thread 1

21

|
Mem Cirl O i
= |

Mem Cirl 1

—_—
L3 Bank O L3 Bank 1 H L3 Bank 2 L3 Bank 3

— . = e g
——— EEs

L2 L2 L2 L2
L juo @ jun L juo @ fun

Domain O i Domain 1

~ Host

Time
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1 2-core host simulating Mem Ctrl 0 5 Mem Ctrl 1
4-core system T\;%/?
. L3 Bank O @ L3 Bank 1 L3 Bank 2 @ L3 Bank 3
1 1000-cycle intervals o _._({3(

- Divide components
| Core0 J§ Core1 NN Core2 [ Core3.

Domain O i Domain 1

among 2 domains

Bound Phase: Parallel simulation until cycle
1000, gather access traces

Host Thread O Core O Core 1
Host Thread 1 Core 3 Core 2

~ Host
Time
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1 2-core host simulating Mem Ctrl 0 5 Mem Ctrl 1
4-core system T\;%/?
. L3 Bank O @ L3 Bank 1 H L3 Bank 2 @ L3 Bank 3
-1 1000-cycle intervals —t 2 _
. | 12 12
- Divide components G0N GO : AN B

Domain O i Domain 1
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1000, gather access traces /

Host Thread O Core O Core 1
Host Thread 1 Core 3 Core 2 m
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Bound-Weave Example o

1 2-core host simulating Mem Ctrl 0 5 Mem Ctrl 1
4-core system T\;%/?
. L3 Bank O @ L3 Bank 1 H L3 Bank 2 @ L3 Bank 3
1 1000-cycle intervals ——n . — % _
. 12 | 12 12
-1 Divide components 1D B0 ' RO KIS

Domain O i Domain 1

among 2 domains

Bound Phase: Parallel simulation until cycle Feedback: Adjust core cycles
1000, gather access traces /

Host Thread O Core O Core 1 Core 3 Core 1
Host Thread 1 Core 3 Core 2 m Core 2 (@Y-X0)

Weave Phase: Parallel event-driven simulation of Bound Phase

~ Host
Time

gathered traces until actual cycle 1000 (until cycle 2000)



Example: Bound Phase

22
Host thread O simulates core O, records trace:
Mem1 @ 110
READ
13b3 @ 270
HIT
1360 @ 230
RESP
100
-—
Core0 @ 30 Core0 @ 60 Core0 @ 90 Core0 @ 250 Core0 @ 290

Edges fix minimum latency between events
Minimum L3 and main memory latencies (no interference)



Example: Weave Phase ’a

Host threads simulate components from domains O, 1
Meml @ 110 L3b3 @ 270

Host Thread 1 A ‘ HIT
Host Thread O

13b1 @ 50  L3b0 @ 80 120

HIT ‘ MISS ‘ ‘ 20 20

20 L3b0 @ 230 20

20 RESP
0.@ . . B
-—

Core0 @ 30 Core0 @ 60 Core0 @ 90 Core0 @ 250 Core0 @ 290

Host threads only sync when needed
e.g., thread 1 simulates other events (not shown) until cycle 110, syncs

Lower bounds guarantee no order violations



Example: Weave Phase o

-1 Delays propagate as events are simulated:

Mem]1 110 L3b3 @ 270
Host Thread 1 AR - HIT

Host Thread 0 00 00/

HIT MISS

20 L3b0 @ 230 20
20 RESP

0.0 . . B
-—

Core0 @ 30 Core0 @ 60 Core0 @ 90 Core0 @ 250 Core0 @ 290




Example: Weave Phase

1 Delays propagate as events are simulated:

Mem]1 @ 110 L3b3 @ 270

Host Thread 1 READ Row miss =2 +50 cycles il

Host Thread 0 1500 @ s

HIT MISS

20 L3b0 @ 230 20
20 RESP

24
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Example: Weave Phase

1 Delays propagate as events are simulated:

Mem]1 @ 110 L3b3 @ 270

Host Thread 1 READ Row miss =2 +50 cycles il

Host Thread 0 1500 @ s

HIT MISS

20 20

L3b0 @ RPLLe
20 RESP

0.0 .

24

-->

Core0 @ 30 Core0 @ 60 Core0 @ 90 Core0 @ Core0 @ 290



Example: Weave Phase

1 Delays propagate as events are simulated:

Mem1 @ 110 L3

Host Thread 1 READ Row miss =2 +50 cycles

Host Thread 0 0 g

HIT MISS

20 20

L3b0 @ RPLLe
20 RESP

24

b3 @ [EZCN

HIT

0.0 .

Core0 @ 30 Core0 @ 60 Core0 @ 90 Core0 @

-->

Core0 @ 290



Example: Weave Phase

1 Delays propagate as events are simulated:

Mem1 @ 110 L3

Host Thread 1 READ Row miss =2 +50 cycles

Host Thread 0 0 g

24

b3 @ [EZCN

HIT

HIT MISS
20 1360 @ PRI 20
20 RESP
.0
Core0 @ 30 Core0 @ 60 Core0 @ 90 Core0 @

-—>

Core0 @



Bound-Weave Scalability

Bound phase scales almost linearly

Using novel shared-memory synchronization protocol (later)

Weave phase scales much better than PDES
Threads only need to sync when an event crosses domains

A lot of work shifted to bound phase
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Bound-Weave Scalability
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Bound phase scales almost linearly

Using novel shared-memory synchronization protocol (later)

Weave phase scales much better than PDES
Threads only need to sync when an event crosses domains

A lot of work shifted to bound phase

Need bound and weave models for each component, but
division is often very natural

e.g., caches: hit/miss on bound phase; MSHRs, pipelined
accesses, port contention on weave phase



Bound-Weave Take-Aways

Minimal synchronization:
Bound phase: Unordered accesses (like lax)

Weave: Only sync on actual dependencies
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Bound-Weave Take-Aways

Minimal synchronization:
Bound phase: Unordered accesses (like lax)

Weave: Only sync on actual dependencies
No ordering violations in weave phase

Works with standard event-driven models
e.g., 110 lines to integrate with DRAMSim2

26



Multithreaded Accuracy

1 23 apps: PARSEC, SPLASH-2, SPEC OMP2001, STREAM

0.3
0.2
0.1
0.0
-0.1
-0.2

27

Perf Error

6"6"6"6" &‘&‘6"6"6"6&h‘@@&‘b‘@-@@%‘@@‘b&@

O\ (0086\‘#306‘(\56‘6‘6‘& Vo %6‘ W e N o2 S N e
I R S A N 3. e’a ’% BN \,oed‘ RN
oW T o9 %\g To¢ %’a@@‘(’ & @0\\’\ ‘\ $F WA 3;3 ‘(Q

M o

1 11.2% avg perf error (not IPC), 10/23 within 10%

Similar differences as single-core results
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1024-Core Performance

Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)
Results for the 14 /23 parallel apps that scale

1600

I I I I
B IPC1-BoundOnly | . ... ./ _
—— 000- BoundWeave
SRR ------- %-------%----200M—I-P—S-hm—eqn
R s ey e
b ot

i ' |
0 2 4 6 8 10 12 14

Application ~100-1

28

tween least and
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Bound-Weave Scalability

16 1§Dcket! | ! 25mlzkets
14_ .......................... : ..............................
Q i
S5 12 I ------------------------------
ks |
B A0t S i
= ) IO SR S O T .
E .
(g O
N : ; - - - -
Ao IPC1-BoundOnly
y ) P o S — 000-BoundWeave
| I | | I I I

2 4 6 8 10 12 14
Host threads



Bound-Weave Scalability
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Qutline

1 Introduction
1 Detailed DBT-accelerated core models
1 Bound-weave parallelization

0 Lightweight user-level virtualization
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No 1Kcore OSs } ZSim has to be

No parallel full-system DBT user-level for now



Lightweight User-Level Virtualization

No 1Kcore OSs } ZSim has to be

No parallel full-system DBT user-level for now

Problem: User-level simulators limited to simple workloads

Lightweight user-level virtualization: Bridge the gap with
full-system simulation

Simulate accurately if time spent in OS is minimal



Lightweight User-Level Virtualization

Multiprocess workloads
Scheduler (threads > cores)
Time virtualization

System virtualization

Simulator-OS deadlock
avoidance

Signals
ISA extensions

Fast-forwarding



ZSim Limitations

Not implemented yet:
Multithreaded cores

Detailed NoC models
Virtual memory (TLBs)
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ZSim Limitations 23

Not implemented yet:
Multithreaded cores

Detailed NoC models
Virtual memory (TLBs)

Fundamentally hard:

Systems or workloads with frequent path-altering interference
(e.g., fine-grained message-passing across whole chip)

Kernel-intensive applications



Summary

Three techniques to make 1Kcore simulation practical
DBT-accelerated models: 10-100x faster core models

Bound-weave parallelization: ~10-15x speedup from
parallelization with minimal accuracy loss

Lightweight user-level virtualization: Simulate complex
workloads without full-system support

ZSim achieves high performance and accuracy:
Simulates 1024-core systems at 10s-1000s of MIPS

Validated against real Westmere system, avg error ~10%
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Main Components

Harness

System
Initialization

Global I

Driver

Memory

Core timin
User- 9

models

level
o Starts

virtualiz
Memory system N

ation . .
timing models
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ZSim Harness

Most of zsim implemented as

a pintool (libzsim.so)

A separate harness process

(zsim) controls simulation
Initializes global memory

Launches pin processes
Checks for deadlock

37
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ZSim Harness

1 Most of zsim implemented as
a pintool (libzsim.so)

-1 A separate harness process
(zsim) controls simulation
Initializes global memory

Launches pin processes
Checks for deadlock

37
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ZSim Harness .

t of zsim implement
-1 Most of zs plemented as ./build/opt/zsim test.cfg

a pintool (libzsim.so)

11 A separate harness process
(zsim) controls simulation
o Initializes global memory

o1 Launches pin processes
1 Checks for deadlock

Global Memory




ZSim Harness

1 Most of zsim implemented as
a pintool (libzsim.so)

11 A separate harness process
(zsim) controls simulation
o Initializes global memory

o1 Launches pin processes
1 Checks for deadlock

Global Memory
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ZSim Harness

1 Most of zsim implemented as
a pintool (libzsim.so)

11 A separate harness process
(zsim) controls simulation

Initializes global memory

Launches pin processes
Checks for deadlock

-_—e e s o= =)

processd = {
command = “1s”;

¥

processl =
command

= “echo foo”;

¥

Global Memory

Zsim




ZSim Harness

0 Most of zsim implementedas . j------

a pintool (libzsimso) = teo----n
processd = {
01 A separate harness process command = “1s”;
(zsim) controls simulation g
o Initializes global memory processl = {
command = “echo fo00”;
=1 Launches pin processes }s

1 Checks for deadlock

Global Memory

pin —t libzsim.so -- Is




ZSim Harness

1 Most of zsim implemented as
a pintool (libzsim.so)

o1 A separate harness process
(zsim) controls simulation
o Initializes global memory

o1 Launches pin processes
1 Checks for deadlock

-_—e e s o= =)

processd = {
command = “1s”;

¥

processl = {
command =

¥

“echo foo”’;

Global Memory

pin —t libzsim.so -- Is

pin —t libzsim.so — echo foo




Global Memory

Pin processes communicate through a shared memory

38

segment, managed as a single global heap

All simulator objects must be allocated in the global heap



Global Memory

01 Pin processes communicate through a shared memory
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segment, managed as a single global heap

o1 All simulator objects must be allocated in the global heap

Process O
address space

Local heap

Global heap

libzsim.so




Global Memory

01 Pin processes communicate through a shared memory

38

segment, managed as a single global heap

o1 All simulator objects must be allocated in the global heap

Process O Process 1
address space address space
Local heap
Local heap

Global heap

Global heap
]

libzsim.so libzsim.so




Global Memory

01 Pin processes communicate through a shared memory

38

segment, managed as a single global heap

o1 All simulator objects must be allocated in the global heap

Process O Process 1
address space address space

Local heap o
ocal heap

Global heap

libzsim.so




Global Memory

01 Pin processes communicate through a shared memory

38

segment, managed as a single global heap

o1 All simulator objects must be allocated in the global heap

Process O Process 1
address space address space

Global heap and

Local heap o libzsim.so code in
ocal heap

same memory

locations across all
Global heap processes = Can

_ use normal pointers

Tomctas & virtual functions




Global Memory Allocation Idioms

Globally-allocated objects: Inherit from GlobAlloc
class SimObject : GlobAlloc { ..

39
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Globally-allocated objects: Inherit from GlobAlloc
class SimObject : GlobAlloc { ..

STL classes that allocate heap memory: Use g_stl variants

g vector<uint64 t> cachelines;



Global Memory Allocation Idioms 0

Globally-allocated objects: Inherit from GlobAlloc
class SimObject : GlobAlloc { ..

STL classes that allocate heap memory: Use g_stl variants

g vector<uint64 t> cachelines;

C-style memory allocation (discouraged):

gm malloc, gm calloc, gm free, ..



Global Memory Allocation Idioms 0

Globally-allocated objects: Inherit from GlobAlloc
class SimObject : GlobAlloc { ..

STL classes that allocate heap memory: Use g_stl variants

g vector<uint64 t> cachelines;

C-style memory allocation (discouraged):

gm malloc, gm calloc, gm free, ..

Declare globally-scoped variables under struct zinfo



Initialization Sequence
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Initialization Sequence 20

1 y

Harness | Config

4 6
System

Driver e
Initialization

Global
Memory 5 7
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afion . .
timing models




Initialization Sequence 20

1

Harness

4
System

Driver e
Initialization

Global

Memory 5

Core timin
User- 9

models
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Y. Starts

virtualiz
. Memory system N
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timing models



Thanks For Your Attention!
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Single-Thread Accuracy: Traces

403.gcc-ref
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Single-Thread Accuracy: Traces
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Motivation e

Timeline:
2008: Decide to study 1K-core systems for my Ph.D. thesis

2009: Try every sim out there, none fast enough
Got M5+GEMS to 512 threads [ASPLOS 2010], barely usable

2010: Start developing ZSim [ZCache, MICRO 2010]

2011: Make ZSim flexible, scalable, develop detailed models, other
groups start using it

2012: Let’s publish a paper and release it...

ZSim design approach:
Make judicious tradeoffs to achieve detailed 1K core sims efficiently
Verify that those tradeoffs result in minor inaccuracies

Disclaimer: Not a silver bullet & tradeoffs may not be accurate for your
target system; you should validate the tradeoffs!



Instruction-Driven Timing Models o

Cycle /event-driven models: Simulate all stages cycle by cycle

Instruction-driven models: Simulate all stages at once for each ins/uop

) ) ) 0\ )

—_ —_ —_ 4 —_

Each stage has separate clocks

Ordered queues (FetchQ, UopQ, LoadQ), StoreQ, ROB) model feedback
loops between stages

Issue window tracks cycles each FU is used to determine dispatch cycle
Even with OOQO, accurate if:
IW prioritizes older uops (OK) v Instr code drives directly

uop exec times not affected by newer uops v DBT can accelerate better

(OK except mem uops, ignore for now)
X Harder to develop



DBT-based Acceleration

120

With instruction-driven models, can push most overheads into

instrumentation phase
Original code (1 basic block)

mov -0x38 (%rbp), Srcx

lea -0x2040 (%rbp),srdx

add %rax, $rbx

mov %rdx,-0x2068 (%rbp) [$>
cmp $O0x1fff,%rax

jne 40530a

Instrumented code

Load (addr = -0x38 (%rbp))
mov —-0x38 (%rbp), $rcx

lea -0x2040 (%rbp),%rdx
add %rax, %rdx

mov %rdx,-0x2068 (%rbp)
Store (addr = -0x2068 (5rbp)’)
cmp S$O0x1fff, %rax
BasicBlock (DecodedBRL)

jne 10840530a

Basic block descriptor

Predecoder/decoder delays

Instruction to uop fission

Instruction fusion
Uop dependencies, latency, ports

Load

Exec

Exec
StAddr
StData

Exec

rbp
rbp
rax
rbp
rdx

rax

rdx

SO

rip

rex
rdx
rdx
SO

rip

rflgs

rflgs

001000
110001
110001
000100
000010
000001



Parallelization Techniques 191

=1 Parallel Discrete Event Simulation (PDES): v' Accurate

X Scales poorly

Thread O Thread 1 Divide components across threads

. Execute events from each component

15

15 maintaining illusion of full order

Pessimistic PDES: Keep skew between v Simple
threads below inter-component latency =~ % Excessive sync

10 |5

Optimistic PDES: Speculate & roll back  v" Less sync
on ordering violations X Heavyweight

1 Lax synchronization: Allow skews above inter-component latencies,
tolerate ordering violations v Scalable

X |naccurate



Bound-Weave Parallelization .

o1 Divide simulation in small intervals (e.g., 1000 cycles)
-1 Two parallel phases per interval: Bound and weave

1 Bound phase:

Find paths

1 Weave phase:

Find timings

Bound-Weave equivalent to PDES
for path-preserving interference



Bound-Weave Example

123
Weave phase: Events spread across two threads
‘\ Meml1 @ 110 - i
- |
Thread O \ READ " g Mem0 @ 1307~ Thread 1 |}
\\ *’ WBACK !
\ |
13b1 @50  L3b0 @ 80MEE=2 1360 @ 250! B3I @270

HIT MISS

REE MSHRI HIT o’
I R
N odl
—”‘
b- -

Core0 @ 30 Core0 @ 60 Core0 @ 90 Core0 @ 250 Core0 @ 290
Crossing events ($8) to only synchronize when needed

e.g., thread 1 reaches cycle 110, “L3b0 @ 80” not done > ¥
checks thread O’s progress, requeues itself later

L3b0 @ 230
RESP

Domain O

Other synchronization-avoiding mechanisms in paper



Bound-Weave Example 104

11 Delays propagate across crossings:

. Row miss = +50 cycles

1 Meml @ 110 -———— ——
Thread O 0\ A #" . MemO @ 130~ Thread 1

\
WBACK 1
1

- emw

N
N ]
\
13b1 @50  L3b0 @ 80V 1360 @ 1303 I/

HIT MISS

REEMSHRI’\ HIT ,/
I ’
R
PR

’(

-
ﬁ/t—’

Domain O

-->

Core0 @ 30 Core0 @ 60 Core0 @ 90 Core0 @ Core0 @

-1 Events are lower-bounded > No ordering violations
v Works with standard event-driven models!
e.g., 110 lines of code to integrate with DRAMSim?2



