
TUNING SLIDE



MICRO-48 Tutorial

December 5, 2015

Fast and Accurate Microarchitectural

Simulation with ZSim

Daniel Sanchez, Nathan Beckmann,

Anurag Mukkara, Po-An Tsai

MIT CSAIL



Welcome!



Agenda
4

8:30 – 9:10 Intro and Overview

9:10 – 9:25 Simulator Organization

9:25 – 10:00 Core Models

10:00 – 10:20 Break / Q&A

10:20 – 11:00 Memory System

11:00 – 11:20 Configuration and Stats

11:20 – 11:40 Validation

11:40 – 12:00 Q&A



Introduction and Overview

5



Motivation
6

 Current detailed simulators are slow (~200 KIPS) 



Motivation
6

 Current detailed simulators are slow (~200 KIPS) 

 Simulation performance wall

 More complex targets (multicore, memory hierarchy, …)

 Hard to parallelize



Motivation
6

 Current detailed simulators are slow (~200 KIPS) 

 Simulation performance wall

 More complex targets (multicore, memory hierarchy, …)

 Hard to parallelize

 Problem: Time to simulate 1000 cores @ 2GHz for 1s at

 200 KIPS:   4 months



Motivation
6

 Current detailed simulators are slow (~200 KIPS) 

 Simulation performance wall

 More complex targets (multicore, memory hierarchy, …)

 Hard to parallelize

 Problem: Time to simulate 1000 cores @ 2GHz for 1s at

 200 KIPS:   4 months

 200 MIPS:  3 hours



Motivation
6

 Current detailed simulators are slow (~200 KIPS) 

 Simulation performance wall

 More complex targets (multicore, memory hierarchy, …)

 Hard to parallelize

 Problem: Time to simulate 1000 cores @ 2GHz for 1s at

 200 KIPS:   4 months

 200 MIPS:  3 hours

 Alternatives?

 FPGAs: Fast, good progress, but still hard to use

 Simplified/abstract models: Fast but inaccurate



ZSim Techniques
7

 Three techniques to make 1000-core simulation practical:

1. Detailed DBT-accelerated core models to speed up sequential 

simulation

2. Bound-weave to scale parallel simulation

3. Lightweight user-level virtualization to bridge user-level/full-

system gap



ZSim Techniques
7

 Three techniques to make 1000-core simulation practical:

1. Detailed DBT-accelerated core models to speed up sequential 

simulation

2. Bound-weave to scale parallel simulation

3. Lightweight user-level virtualization to bridge user-level/full-

system gap

 ZSim achieves high performance and accuracy:

 Simulates 1024-core systems at 10s-1000s of MIPS

 100-1000x faster than current simulators

 Validated against real Westmere system, avg error ~10%



This Presentation is Also a Demo!
8

 ZSim is simulating these slides

 OOO Westmere cores running at 2 GHz

 3-level cache hierarchy

 Will illustrate other features as I present them

Total cycles and instructions  

simulated (in billions) 

Current simulation speed and basic stats

(updated every 500ms)



This Presentation is Also a Demo!
8

 ZSim is simulating these slides

 OOO Westmere cores running at 2 GHz

 3-level cache hierarchy

 Will illustrate other features as I present them

Total cycles and instructions  

simulated (in billions) 

Current simulation speed and basic stats

(updated every 500ms)

Busy (> 0.9 cores active)

0.1 < cores active < 0.9

Idle (< 0.1 cores active)



This Presentation is Also a Demo!
8

 ZSim is simulating these slides

 OOO Westmere cores running at 2 GHz

 3-level cache hierarchy

 Will illustrate other features as I present them

Total cycles and instructions  

simulated (in billions) 

Current simulation speed and basic stats

(updated every 500ms)

ZSim performance relevant when busy

Running on 2-core laptop CPU @ 1.7 GHz 

~12x slower than 16-core server @ 2.6 GHz

Busy (> 0.9 cores active)

0.1 < cores active < 0.9

Idle (< 0.1 cores active)

!



Main Design Decisions
9

 General execution-driven simulator:

Functional 

model

Timing 

model



Main Design Decisions
9

 General execution-driven simulator:

Functional 

model

Timing 

model

Emulation? (e.g., gem5, MARSSx86)

Instrumentation? (e.g., Graphite, Sniper)



Main Design Decisions
9

 General execution-driven simulator:

Functional 

model

Timing 

model

Emulation? (e.g., gem5, MARSSx86)

Instrumentation? (e.g., Graphite, Sniper)

Functional model “for free”

 Base ISA = Host ISA (x86)

Dynamic Binary Translation (Pin)



Main Design Decisions
9

 General execution-driven simulator:

Functional 

model

Timing 

model

Emulation? (e.g., gem5, MARSSx86)

Instrumentation? (e.g., Graphite, Sniper)

Cycle-driven?

Event-driven?

Functional model “for free”

 Base ISA = Host ISA (x86)

Dynamic Binary Translation (Pin)



Main Design Decisions
9

 General execution-driven simulator:

Functional 

model

Timing 

model

Emulation? (e.g., gem5, MARSSx86)

Instrumentation? (e.g., Graphite, Sniper)

Cycle-driven?

Event-driven?

Functional model “for free”

 Base ISA = Host ISA (x86)

DBT-accelerated, 

instruction-driven core

+

Event-driven uncore

Dynamic Binary Translation (Pin)



Outline
10

 Introduction

 Detailed DBT-accelerated core models

 Bound-weave parallelization

 Lightweight user-level virtualization



 Shift most of the work to DBT instrumentation phase

Accelerating Core Models
11

mov (%rbp),%rcx

add  %rax,%rbx

mov %rdx,(%rbp)

ja 40530a

Load(addr = (%rbp))

mov (%rbp),%rcx

add  %rax,%rdx

Store(addr = (%rbp))

mov %rdx,(%rbp)

BasicBlock(BBLDescriptor)

ja 10840530a

Basic block Instrumented basic block Basic block descriptor

Insµop decoding

µop dependencies, 

functional units, latency 

Front-end delays

+



 Shift most of the work to DBT instrumentation phase

 Instruction-driven models: Simulate all stages at once for each 

instruction/ µop

Accelerating Core Models
11

mov (%rbp),%rcx

add  %rax,%rbx

mov %rdx,(%rbp)

ja 40530a

Load(addr = (%rbp))

mov (%rbp),%rcx

add  %rax,%rdx

Store(addr = (%rbp))

mov %rdx,(%rbp)

BasicBlock(BBLDescriptor)

ja 10840530a

Basic block Instrumented basic block Basic block descriptor

Insµop decoding

µop dependencies, 

functional units, latency 

Front-end delays

+



 Shift most of the work to DBT instrumentation phase

 Instruction-driven models: Simulate all stages at once for each 

instruction/ µop

 Accurate even with OOO if instruction window prioritizes older instructions

 Faster, but more complex than cycle-driven

Accelerating Core Models
11

mov (%rbp),%rcx

add  %rax,%rbx

mov %rdx,(%rbp)

ja 40530a

Load(addr = (%rbp))

mov (%rbp),%rcx

add  %rax,%rdx

Store(addr = (%rbp))

mov %rdx,(%rbp)

BasicBlock(BBLDescriptor)

ja 10840530a

Basic block Instrumented basic block Basic block descriptor

Insµop decoding

µop dependencies, 

functional units, latency 

Front-end delays

+



Detailed OOO Model
12

 OOO core modeled and validated against Westmere

Main Features

Fetch

Decode

Issue

OOO

Exec

Commit

Wrong-path fetches

Branch Prediction

Front-end delays (predecoder, decoder)

Detailed instruction to µop decoding

Rename/capture stalls

IW with limited size and width

Functional unit delays and contention

Detailed LSU (forwarding, fences,…)

Reorder buffer with limited size and width



Detailed OOO Model
13

 OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO

Exec

Commit



Detailed OOO Model
13

 OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO

Exec

Commit

Fundamentally Hard to Model

Wrong-path execution



Detailed OOO Model
13

 OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO

Exec

Commit

Fundamentally Hard to Model

Wrong-path execution

In Westmere, wrong-path instructions don’t 

affect recovery latency or pollute caches 

Skipping OK



Detailed OOO Model
13

 OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO

Exec

Commit

Fundamentally Hard to Model

Wrong-path execution

Rarely used 

instructions

BTB

LSD

TLBs

In Westmere, wrong-path instructions don’t 

affect recovery latency or pollute caches 

Skipping OK

Not Modeled (Yet)



Single-Thread Accuracy
14

 8.5% average IPC error, max 26%, 21/29 within 10%

 29 SPEC CPU2006 apps for 50 Billion instructions

 Real: Xeon L5640 (Westmere), 3x DDR3-1333, no HT

 Simulated: OOO cores @ 2.27 GHz, detailed uncore



Single-Thread Performance
15

 Host: E5-2670 @ 2.6 GHz (single-thread simulation)

 29 SPEC CPU2006 apps for 50 Billion instructions



Single-Thread Performance
15

 Host: E5-2670 @ 2.6 GHz (single-thread simulation)

 29 SPEC CPU2006 apps for 50 Billion instructions

40 MIPS hmean

12 MIPS hmean



Single-Thread Performance
15

 Host: E5-2670 @ 2.6 GHz (single-thread simulation)

 29 SPEC CPU2006 apps for 50 Billion instructions

40 MIPS hmean

12 MIPS hmean

~10-100x faster



Single-Thread Performance
15

 Host: E5-2670 @ 2.6 GHz (single-thread simulation)

 29 SPEC CPU2006 apps for 50 Billion instructions

40 MIPS hmean

12 MIPS hmean

~3x between least and

most detailed models!

~10-100x faster



Outline
16

 Introduction

 Detailed DBT-accelerated core models

 Bound-weave parallelization

 Lightweight user-level virtualization



Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1



Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host 

Thread 0

Host 

Thread 1



Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host 

Thread 0

Host 

Thread 1

5 10

15 15

10 5Skew < 10 cycles



Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host 

Thread 0

Host 

Thread 1

5 10

15 15

10 5
Accurate

 Not scalable
Skew < 10 cycles



Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

 Lax synchronization: Allow skews above inter-component 

latencies, tolerate ordering violations

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host 

Thread 0

Host 

Thread 1

5 10

15 15

10 5

Scalable

 Inaccurate

Accurate

 Not scalable
Skew < 10 cycles



Characterizing Interference
18

Path-altering interference

If we simulate two accesses out of order, their

paths through the memory hierarchy change

GETS A

HIT

Core 0

LLC

Mem

GETS A

MISS

1 2

Core1



Characterizing Interference
18

Path-altering interference

If we simulate two accesses out of order, their

paths through the memory hierarchy change

GETS A

HIT

Core 0

LLC

Mem

GETS A

MISS

1 2

Core1 Core 0

LLC

Mem

GETS A

HIT

GETS A

MISS

2 1

Core 1



Characterizing Interference
18

Path-altering interference

If we simulate two accesses out of order, their

paths through the memory hierarchy change

Path-preserving interference

If we simulate two accesses out of order, their 

timing changes but their paths do not

GETS A

HIT

Core 0

LLC

Mem

GETS A

MISS

1 2

Core1 Core 0

LLC

Mem

GETS A

HIT

GETS A

MISS

2 1

Core 1

GETS B

HIT

Core 0

LLC (blocking)

Mem

GETS A

MISS

1 2

Core 1

3 4

5

6



Characterizing Interference
18

Path-altering interference

If we simulate two accesses out of order, their

paths through the memory hierarchy change

Path-preserving interference

If we simulate two accesses out of order, their 

timing changes but their paths do not

GETS A

HIT

Core 0

LLC

Mem

GETS A

MISS

1 2

Core1 Core 0

LLC

Mem

GETS A

HIT

GETS A

MISS

2 1

Core 1

GETS B

HIT

Core 0

LLC (blocking)

Mem

GETS A

MISS

1 2

Core 1

3 4

5

6
GETS B

HIT

Core 0

LLC (blocking)

Mem

GETS A

MISS

2 1

Core 1

4 5

6

3



Characterizing Interference
19

 Accesses with path-altering interference with barrier 
synchronization every 1K/10K/100K cycles (64 cores):

1 in10K accesses



Characterizing Interference
19

 Path-altering interference extremely rare in small intervals

 Accesses with path-altering interference with barrier 
synchronization every 1K/10K/100K cycles (64 cores):

1 in10K accesses



Characterizing Interference
19

 Path-altering interference extremely rare in small intervals

 Strategy:

 Simulate path-preserving interference faithfully

 Ignore (but optionally profile) path-altering interference

 Accesses with path-altering interference with barrier 
synchronization every 1K/10K/100K cycles (64 cores):

1 in10K accesses



Bound-Weave Parallelization
20

 Divide simulation in small intervals (e.g., 1000 cycles)

 Two parallel phases per interval: Bound and weave



Bound-Weave Parallelization
20

 Divide simulation in small intervals (e.g., 1000 cycles)

 Two parallel phases per interval: Bound and weave

Bound phase: Find paths

Weave phase: Find timings



Bound-Weave Parallelization
20

 Divide simulation in small intervals (e.g., 1000 cycles)

 Two parallel phases per interval: Bound and weave

Bound-Weave equivalent to PDES

for path-preserving interference

Bound phase: Find paths

Weave phase: Find timings



Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3



Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1



Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Host Thread 0

Host Thread 1
Host

Time



Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Parallel simulation until cycle 

1000, gather access traces

Host Thread 0

Host Thread 1
Host

Time



Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Parallel simulation until cycle 

1000, gather access traces

Domain 0

Domain 1

Weave Phase: Parallel event-driven simulation of 

gathered traces until actual cycle 1000

Host Thread 0

Host Thread 1
Host

Time



Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Parallel simulation until cycle 

1000, gather access traces

Domain 0

Domain 1

Weave Phase: Parallel event-driven simulation of 

gathered traces until actual cycle 1000

Feedback: Adjust core cycles

Host Thread 0

Host Thread 1
Host

Time



Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Parallel simulation until cycle 

1000, gather access traces

Domain 0

Domain 1

Weave Phase: Parallel event-driven simulation of 

gathered traces until actual cycle 1000

Feedback: Adjust core cycles

Bound Phase

(until cycle 2000)

…
Core 3

Core 2 Core 0

Core 1Host Thread 0

Host Thread 1
Host

Time



Example: Bound Phase
22

 Host thread 0 simulates core 0, records trace:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

 Edges fix minimum latency between events

 Minimum L3 and main memory latencies (no interference)

20

20

20

3030 100

30 120

20
20 20

40



Example: Weave Phase
23

 Host threads simulate components from domains 0,1

 Host threads only sync when needed

 e.g., thread 1 simulates other events (not shown) until cycle 110, syncs

 Lower bounds guarantee no order violations

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1



Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1



Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss  +50 cycles



Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss  +50 cycles

170



Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss  +50 cycles

280

170



Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss  +50 cycles

280

290

300

170



Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss  +50 cycles

280

290

300

320

170



Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss  +50 cycles

280

290

300

320

340

170



Bound-Weave Scalability
25

 Bound phase scales almost linearly

 Using novel shared-memory synchronization protocol (later)

 Weave phase scales much better than PDES

 Threads only need to sync when an event crosses domains

 A lot of work shifted to bound phase



Bound-Weave Scalability
25

 Bound phase scales almost linearly

 Using novel shared-memory synchronization protocol (later)

 Weave phase scales much better than PDES

 Threads only need to sync when an event crosses domains

 A lot of work shifted to bound phase

 Need bound and weave models for each component, but 

division is often very natural

 e.g., caches: hit/miss on bound phase; MSHRs, pipelined 

accesses, port contention on weave phase



Bound-Weave Take-Aways
26

 Minimal synchronization:

 Bound phase: Unordered accesses (like lax)

 Weave: Only sync on actual dependencies



Bound-Weave Take-Aways
26

 Minimal synchronization:

 Bound phase: Unordered accesses (like lax)

 Weave: Only sync on actual dependencies

 No ordering violations in weave phase 



Bound-Weave Take-Aways
26

 Minimal synchronization:

 Bound phase: Unordered accesses (like lax)

 Weave: Only sync on actual dependencies

 No ordering violations in weave phase 

 Works with standard event-driven models

 e.g., 110 lines to integrate with DRAMSim2



Multithreaded Accuracy
27

 23 apps: PARSEC, SPLASH-2, SPEC OMP2001, STREAM

 11.2% avg perf error (not IPC), 10/23 within 10%

 Similar differences as single-core results



1024-Core Performance
28

 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)

 Results for the 14/23 parallel apps that scale



1024-Core Performance
28

 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)

 Results for the 14/23 parallel apps that scale

200 MIPS hmean

41 MIPS hmean



1024-Core Performance
28

 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)

 Results for the 14/23 parallel apps that scale

200 MIPS hmean

41 MIPS hmean

~100-1000x faster



1024-Core Performance
28

 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)

 Results for the 14/23 parallel apps that scale

200 MIPS hmean

41 MIPS hmean

~5x between least and

most detailed models!

~100-1000x faster



Bound-Weave Scalability
29



Bound-Weave Scalability
29

10.1-13.6x speedup @ 16 cores



Outline
30

 Introduction

 Detailed DBT-accelerated core models

 Bound-weave parallelization

 Lightweight user-level virtualization



Lightweight User-Level Virtualization
31

 No 1Kcore OSs

 No parallel full-system DBT

ZSim has to be

user-level for now



Lightweight User-Level Virtualization
31

 No 1Kcore OSs

 No parallel full-system DBT

 Problem: User-level simulators limited to simple workloads

 Lightweight user-level virtualization: Bridge the gap with 

full-system simulation

 Simulate accurately if time spent in OS is minimal

ZSim has to be

user-level for now



Lightweight User-Level Virtualization
32

 Multiprocess workloads

 Scheduler (threads > cores)

 Time virtualization

 System virtualization

 Simulator-OS deadlock
avoidance

 Signals

 ISA extensions

 Fast-forwarding



ZSim Limitations
33

 Not implemented yet:

 Multithreaded cores

 Detailed NoC models

 Virtual memory (TLBs)



ZSim Limitations
33

 Not implemented yet:

 Multithreaded cores

 Detailed NoC models

 Virtual memory (TLBs)

 Fundamentally hard: 

 Systems or workloads with frequent path-altering interference 

(e.g., fine-grained message-passing across whole chip)

 Kernel-intensive applications



Summary
34

 Three techniques to make 1Kcore simulation practical

 DBT-accelerated models: 10-100x faster core models

 Bound-weave parallelization: ~10-15x speedup from 

parallelization with minimal accuracy loss

 Lightweight user-level virtualization: Simulate complex 

workloads without full-system support

 ZSim achieves high performance and accuracy:

 Simulates 1024-core systems at 10s-1000s of MIPS

 Validated against real Westmere system, avg error ~10%



Simulator Organization

35



Main Components
36

Harness

Driver
System 

Initialization

Config

Core timing 

models

Memory system 

timing models

Global 

Memory

User-

level 

virtualiz

ation

Stats



ZSim Harness
37

 Most of zsim implemented as 

a pintool (libzsim.so)

 A separate harness process 

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock



ZSim Harness
37

 Most of zsim implemented as 

a pintool (libzsim.so)

 A separate harness process 

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

./build/opt/zsim test.cfg



ZSim Harness
37

 Most of zsim implemented as 

a pintool (libzsim.so)

 A separate harness process 

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg



ZSim Harness
37

 Most of zsim implemented as 

a pintool (libzsim.so)

 A separate harness process 

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

Global Memory



ZSim Harness
37

 Most of zsim implemented as 

a pintool (libzsim.so)

 A separate harness process 

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

Global Memory



ZSim Harness
37

 Most of zsim implemented as 

a pintool (libzsim.so)

 A separate harness process 

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

process0 = {
command = “ls”;

};

process1 = {
command = “echo foo”;

};

…

Global Memory



ZSim Harness
37

 Most of zsim implemented as 

a pintool (libzsim.so)

 A separate harness process 

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

process0 = {
command = “ls”;

};

process1 = {
command = “echo foo”;

};

…

Global Memory

pin –t libzsim.so -- ls



ZSim Harness
37

 Most of zsim implemented as 

a pintool (libzsim.so)

 A separate harness process 

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

process0 = {
command = “ls”;

};

process1 = {
command = “echo foo”;

};

…

Global Memory

pin –t libzsim.so -- ls

pin –t libzsim.so – echo foo



Global Memory
38

 Pin processes communicate through a shared memory 

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap



Global Memory
38

 Pin processes communicate through a shared memory 

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Process 0

address space

Program code

Local heap

Global heap

libzsim.so



Global Memory
38

 Pin processes communicate through a shared memory 

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Process 0

address space

Program code

Local heap

Global heap

libzsim.so

Process 1

address space

Program code

Local heap

Global heap

libzsim.so



Global Memory
38

 Pin processes communicate through a shared memory 

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Process 0

address space

Program code

Local heap

Global heap

libzsim.so

Process 1

address space

Program code

Local heap

Global heap

libzsim.so



Global Memory
38

 Pin processes communicate through a shared memory 

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Process 0

address space

Program code

Local heap

Global heap

libzsim.so

Process 1

address space

Program code

Local heap

Global heap

libzsim.so

Global heap and 

libzsim.so code in 

same memory 

locations across all 

processes  Can 

use normal pointers 

& virtual functions



Global Memory Allocation Idioms
39

 Globally-allocated objects: Inherit from GlobAlloc

class SimObject : GlobAlloc { …



Global Memory Allocation Idioms
39

 Globally-allocated objects: Inherit from GlobAlloc

class SimObject : GlobAlloc { …

 STL classes that allocate heap memory: Use g_stl variants

g_vector<uint64_t> cacheLines;



Global Memory Allocation Idioms
39

 Globally-allocated objects: Inherit from GlobAlloc

class SimObject : GlobAlloc { …

 STL classes that allocate heap memory: Use g_stl variants

g_vector<uint64_t> cacheLines;

 C-style memory allocation (discouraged): 

gm_malloc, gm_calloc, gm_free, …



Global Memory Allocation Idioms
39

 Globally-allocated objects: Inherit from GlobAlloc

class SimObject : GlobAlloc { …

 STL classes that allocate heap memory: Use g_stl variants

g_vector<uint64_t> cacheLines;

 C-style memory allocation (discouraged): 

gm_malloc, gm_calloc, gm_free, …

 Declare globally-scoped variables under struct zinfo



Initialization Sequence
40

Harness

1



Initialization Sequence
40

Harness

1

Config

2



Initialization Sequence
40

Harness

1

Config

2

Global 

Memory

3



Initialization Sequence
40

Harness

1

Config

2

Global 

Memory

3

Driver

4



Initialization Sequence
40

Harness

1

Config

2

Global 

Memory

3

Driver

4

User-

level 

virtualiz

ation

5



Initialization Sequence
40

Harness

1

Config

2

Global 

Memory

3

Driver

4
System 

Initialization

6

User-

level 

virtualiz

ation

5



Initialization Sequence
40

Harness

1

Config

2

Global 

Memory

3

Driver

4
System 

Initialization

6

User-

level 

virtualiz

ation

5

Stats

7



Initialization Sequence
40

Harness

1

Config

2

Global 

Memory

3

Driver

4
System 

Initialization

6

User-

level 

virtualiz

ation

5

Stats

7

Memory system 

timing models

8



Initialization Sequence
40

Harness

1

Config

2

Global 

Memory

3

Driver

4
System 

Initialization

6

User-

level 

virtualiz

ation

5

Stats

7

Memory system 

timing models

8

Core timing 

models

9



Thanks For Your Attention!

Questions?



Backup Slides



Single-Thread Accuracy: Traces
116



Single-Thread Accuracy: Traces
117



Motivation
118

 Timeline:

 2008: Decide to study 1K-core systems for my Ph.D. thesis

 2009: Try every sim out there, none fast enough

 Got M5+GEMS to 512 threads [ASPLOS 2010], barely usable

 2010: Start developing ZSim [ZCache, MICRO 2010]

 2011: Make ZSim flexible, scalable, develop detailed models, other 
groups start using it

 2012: Let’s publish a paper and release it…

 ZSim design approach:

 Make judicious tradeoffs to achieve detailed 1K core sims efficiently

 Verify that those tradeoffs result in minor inaccuracies

 Disclaimer: Not a silver bullet & tradeoffs may not be accurate for your 
target system; you should validate the tradeoffs!



Instruction-Driven Timing Models
119

 Cycle/event-driven models: Simulate all stages cycle by cycle

 Instruction-driven models: Simulate all stages at once for each ins/uop

 Each stage has separate clocks

 Ordered queues (FetchQ, UopQ, LoadQ, StoreQ, ROB) model feedback 
loops between stages

 Issue window tracks cycles each FU is used to determine dispatch cycle

 Even with OOO, accurate if:

1. IW prioritizes older uops (OK)

2. uop exec times not affected by newer uops
(OK except mem uops, ignore for now)

F
e
tc

h

D
e
co

d
e

Is
su

e

O
O

O

Ex
e
c

C
o
m

m
it

 Instr code drives directly

DBT can accelerate better

 Harder to develop



DBT-based Acceleration
120

 With instruction-driven models, can push most overheads into 
instrumentation phase

mov -0x38(%rbp),%rcx

lea  -0x2040(%rbp),%rdx

add  %rax,%rbx

mov %rdx,-0x2068(%rbp)

cmp $0x1fff,%rax

jne 40530a

Load(addr = -0x38(%rbp))

mov -0x38(%rbp),%rcx

lea  -0x2040(%rbp),%rdx

add  %rax,%rdx

mov %rdx,-0x2068(%rbp)

Store(addr = -0x2068(%rbp))

cmp $0x1fff,%rax

BasicBlock(DecodedBBL)

jne 10840530a

Basic block descriptor

Type Src1 Src2 Dst1 Dst2 Lat PortMsk

Load rbp rcx 001000

Exec rbp rdx 3 110001

Exec rax rdx rdx rflgs 1 110001

StAddr rbp S0 1 000100

StData rdx S0 000010

Exec rax rip rip rflgs 1 000001

Instrumented code

Original code (1 basic block)

…

Predecoder/decoder delays

Instruction to uop fission

Instruction fusion

Uop dependencies, latency, ports



Parallelization Techniques
121

 Parallel Discrete Event Simulation (PDES):

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Thread 0 Thread 1 Divide components across threads

Execute events from each component

maintaining illusion of full order

Pessimistic PDES: Keep skew between

threads below inter-component latency
5 10

15 15

10 5

Optimistic PDES: Speculate & roll back

on ordering violations

 Simple

 Excessive sync

 Less sync

 Heavyweight

 Lax synchronization: Allow skews above inter-component latencies, 

tolerate ordering violations
 Scalable

 Inaccurate

 Accurate

 Scales poorly



Bound-Weave Parallelization
122

 Divide simulation in small intervals (e.g., 1000 cycles)

 Two parallel phases per interval: Bound and weave

 Bound phase:

 Simulate each core independently using instruction-driven models

 Record paths of all accesses through the memory hierarchy

 Uncore models assume no interference, use minimum response time 
for all accesses  puts lower bound on all events
 e.g., for a main memory access: uncontended caches, buses, row hit

 Weave phase:

 Perform parallel event-driven simulation of recorded events

 Leverage prior knowledge of events to scale

Bound-Weave equivalent to PDES

for path-preserving interference

Find paths

Find timings



Bound-Weave Example
123

 Weave phase: Events spread across two threads

 Crossing events (   ) to only synchronize when needed

 e.g., thread 1 reaches cycle 110, “L3b0 @ 80” not done 
checks thread 0’s progress, requeues itself later

 Other synchronization-avoiding mechanisms in paper

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ Mem0 @ 130

WBACK

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

L3b0 @ 250

FREE MSHR

L3b3 @ 270

HIT

Core0 @ 290

Thread 0 Thread 1

Domain 0



 Events are lower-bounded  No ordering violations

 e.g., 110 lines of code to integrate with DRAMSim2

Bound-Weave Example
124

 Delays propagate across crossings:

Works with standard event-driven models!

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ Mem0 @ 130

WBACK

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

L3b0 @ 250

FREE MSHR

L3b3 @ 270

HIT

Core0 @ 290

Thread 0 Thread 1

Domain 0

Row miss  +50 cycles

280

290

300

320

350


