
TUNING SLIDE

MICRO-48 Tutorial

December 5, 2015

Fast and Accurate Microarchitectural

Simulation with ZSim

Daniel Sanchez, Nathan Beckmann,

Anurag Mukkara, Po-An Tsai

MIT CSAIL

Welcome!

Agenda
4

8:30 – 9:10 Intro and Overview

9:10 – 9:25 Simulator Organization

9:25 – 10:00 Core Models

10:00 – 10:20 Break / Q&A

10:20 – 11:00 Memory System

11:00 – 11:20 Configuration and Stats

11:20 – 11:40 Validation

11:40 – 12:00 Q&A

Introduction and Overview

5

Motivation
6

 Current detailed simulators are slow (~200 KIPS)

Motivation
6

 Current detailed simulators are slow (~200 KIPS)

 Simulation performance wall

 More complex targets (multicore, memory hierarchy, …)

 Hard to parallelize

Motivation
6

 Current detailed simulators are slow (~200 KIPS)

 Simulation performance wall

 More complex targets (multicore, memory hierarchy, …)

 Hard to parallelize

 Problem: Time to simulate 1000 cores @ 2GHz for 1s at

 200 KIPS: 4 months

Motivation
6

 Current detailed simulators are slow (~200 KIPS)

 Simulation performance wall

 More complex targets (multicore, memory hierarchy, …)

 Hard to parallelize

 Problem: Time to simulate 1000 cores @ 2GHz for 1s at

 200 KIPS: 4 months

 200 MIPS: 3 hours

Motivation
6

 Current detailed simulators are slow (~200 KIPS)

 Simulation performance wall

 More complex targets (multicore, memory hierarchy, …)

 Hard to parallelize

 Problem: Time to simulate 1000 cores @ 2GHz for 1s at

 200 KIPS: 4 months

 200 MIPS: 3 hours

 Alternatives?

 FPGAs: Fast, good progress, but still hard to use

 Simplified/abstract models: Fast but inaccurate

ZSim Techniques
7

 Three techniques to make 1000-core simulation practical:

1. Detailed DBT-accelerated core models to speed up sequential

simulation

2. Bound-weave to scale parallel simulation

3. Lightweight user-level virtualization to bridge user-level/full-

system gap

ZSim Techniques
7

 Three techniques to make 1000-core simulation practical:

1. Detailed DBT-accelerated core models to speed up sequential

simulation

2. Bound-weave to scale parallel simulation

3. Lightweight user-level virtualization to bridge user-level/full-

system gap

 ZSim achieves high performance and accuracy:

 Simulates 1024-core systems at 10s-1000s of MIPS

 100-1000x faster than current simulators

 Validated against real Westmere system, avg error ~10%

This Presentation is Also a Demo!
8

 ZSim is simulating these slides

 OOO Westmere cores running at 2 GHz

 3-level cache hierarchy

 Will illustrate other features as I present them

Total cycles and instructions

simulated (in billions)

Current simulation speed and basic stats

(updated every 500ms)

This Presentation is Also a Demo!
8

 ZSim is simulating these slides

 OOO Westmere cores running at 2 GHz

 3-level cache hierarchy

 Will illustrate other features as I present them

Total cycles and instructions

simulated (in billions)

Current simulation speed and basic stats

(updated every 500ms)

Busy (> 0.9 cores active)

0.1 < cores active < 0.9

Idle (< 0.1 cores active)

This Presentation is Also a Demo!
8

 ZSim is simulating these slides

 OOO Westmere cores running at 2 GHz

 3-level cache hierarchy

 Will illustrate other features as I present them

Total cycles and instructions

simulated (in billions)

Current simulation speed and basic stats

(updated every 500ms)

ZSim performance relevant when busy

Running on 2-core laptop CPU @ 1.7 GHz

~12x slower than 16-core server @ 2.6 GHz

Busy (> 0.9 cores active)

0.1 < cores active < 0.9

Idle (< 0.1 cores active)

!

Main Design Decisions
9

 General execution-driven simulator:

Functional

model

Timing

model

Main Design Decisions
9

 General execution-driven simulator:

Functional

model

Timing

model

Emulation? (e.g., gem5, MARSSx86)

Instrumentation? (e.g., Graphite, Sniper)

Main Design Decisions
9

 General execution-driven simulator:

Functional

model

Timing

model

Emulation? (e.g., gem5, MARSSx86)

Instrumentation? (e.g., Graphite, Sniper)

Functional model “for free”

 Base ISA = Host ISA (x86)

Dynamic Binary Translation (Pin)

Main Design Decisions
9

 General execution-driven simulator:

Functional

model

Timing

model

Emulation? (e.g., gem5, MARSSx86)

Instrumentation? (e.g., Graphite, Sniper)

Cycle-driven?

Event-driven?

Functional model “for free”

 Base ISA = Host ISA (x86)

Dynamic Binary Translation (Pin)

Main Design Decisions
9

 General execution-driven simulator:

Functional

model

Timing

model

Emulation? (e.g., gem5, MARSSx86)

Instrumentation? (e.g., Graphite, Sniper)

Cycle-driven?

Event-driven?

Functional model “for free”

 Base ISA = Host ISA (x86)

DBT-accelerated,

instruction-driven core

+

Event-driven uncore

Dynamic Binary Translation (Pin)

Outline
10

 Introduction

 Detailed DBT-accelerated core models

 Bound-weave parallelization

 Lightweight user-level virtualization

 Shift most of the work to DBT instrumentation phase

Accelerating Core Models
11

mov (%rbp),%rcx

add %rax,%rbx

mov %rdx,(%rbp)

ja 40530a

Load(addr = (%rbp))

mov (%rbp),%rcx

add %rax,%rdx

Store(addr = (%rbp))

mov %rdx,(%rbp)

BasicBlock(BBLDescriptor)

ja 10840530a

Basic block Instrumented basic block Basic block descriptor

Insµop decoding

µop dependencies,

functional units, latency

Front-end delays

+

 Shift most of the work to DBT instrumentation phase

 Instruction-driven models: Simulate all stages at once for each

instruction/ µop

Accelerating Core Models
11

mov (%rbp),%rcx

add %rax,%rbx

mov %rdx,(%rbp)

ja 40530a

Load(addr = (%rbp))

mov (%rbp),%rcx

add %rax,%rdx

Store(addr = (%rbp))

mov %rdx,(%rbp)

BasicBlock(BBLDescriptor)

ja 10840530a

Basic block Instrumented basic block Basic block descriptor

Insµop decoding

µop dependencies,

functional units, latency

Front-end delays

+

 Shift most of the work to DBT instrumentation phase

 Instruction-driven models: Simulate all stages at once for each

instruction/ µop

 Accurate even with OOO if instruction window prioritizes older instructions

 Faster, but more complex than cycle-driven

Accelerating Core Models
11

mov (%rbp),%rcx

add %rax,%rbx

mov %rdx,(%rbp)

ja 40530a

Load(addr = (%rbp))

mov (%rbp),%rcx

add %rax,%rdx

Store(addr = (%rbp))

mov %rdx,(%rbp)

BasicBlock(BBLDescriptor)

ja 10840530a

Basic block Instrumented basic block Basic block descriptor

Insµop decoding

µop dependencies,

functional units, latency

Front-end delays

+

Detailed OOO Model
12

 OOO core modeled and validated against Westmere

Main Features

Fetch

Decode

Issue

OOO

Exec

Commit

Wrong-path fetches

Branch Prediction

Front-end delays (predecoder, decoder)

Detailed instruction to µop decoding

Rename/capture stalls

IW with limited size and width

Functional unit delays and contention

Detailed LSU (forwarding, fences,…)

Reorder buffer with limited size and width

Detailed OOO Model
13

 OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO

Exec

Commit

Detailed OOO Model
13

 OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO

Exec

Commit

Fundamentally Hard to Model

Wrong-path execution

Detailed OOO Model
13

 OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO

Exec

Commit

Fundamentally Hard to Model

Wrong-path execution

In Westmere, wrong-path instructions don’t

affect recovery latency or pollute caches

Skipping OK

Detailed OOO Model
13

 OOO core modeled and validated against Westmere

Fetch

Decode

Issue

OOO

Exec

Commit

Fundamentally Hard to Model

Wrong-path execution

Rarely used

instructions

BTB

LSD

TLBs

In Westmere, wrong-path instructions don’t

affect recovery latency or pollute caches

Skipping OK

Not Modeled (Yet)

Single-Thread Accuracy
14

 8.5% average IPC error, max 26%, 21/29 within 10%

 29 SPEC CPU2006 apps for 50 Billion instructions

 Real: Xeon L5640 (Westmere), 3x DDR3-1333, no HT

 Simulated: OOO cores @ 2.27 GHz, detailed uncore

Single-Thread Performance
15

 Host: E5-2670 @ 2.6 GHz (single-thread simulation)

 29 SPEC CPU2006 apps for 50 Billion instructions

Single-Thread Performance
15

 Host: E5-2670 @ 2.6 GHz (single-thread simulation)

 29 SPEC CPU2006 apps for 50 Billion instructions

40 MIPS hmean

12 MIPS hmean

Single-Thread Performance
15

 Host: E5-2670 @ 2.6 GHz (single-thread simulation)

 29 SPEC CPU2006 apps for 50 Billion instructions

40 MIPS hmean

12 MIPS hmean

~10-100x faster

Single-Thread Performance
15

 Host: E5-2670 @ 2.6 GHz (single-thread simulation)

 29 SPEC CPU2006 apps for 50 Billion instructions

40 MIPS hmean

12 MIPS hmean

~3x between least and

most detailed models!

~10-100x faster

Outline
16

 Introduction

 Detailed DBT-accelerated core models

 Bound-weave parallelization

 Lightweight user-level virtualization

Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host

Thread 0

Host

Thread 1

Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host

Thread 0

Host

Thread 1

5 10

15 15

10 5Skew < 10 cycles

Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host

Thread 0

Host

Thread 1

5 10

15 15

10 5
Accurate

 Not scalable
Skew < 10 cycles

Parallelization Techniques
17

 Parallel Discrete Event Simulation (PDES):

 Divide components across host threads

 Execute events from each component

maintaining illusion of full order

 Lax synchronization: Allow skews above inter-component

latencies, tolerate ordering violations

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Host

Thread 0

Host

Thread 1

5 10

15 15

10 5

Scalable

 Inaccurate

Accurate

 Not scalable
Skew < 10 cycles

Characterizing Interference
18

Path-altering interference

If we simulate two accesses out of order, their

paths through the memory hierarchy change

GETS A

HIT

Core 0

LLC

Mem

GETS A

MISS

1 2

Core1

Characterizing Interference
18

Path-altering interference

If we simulate two accesses out of order, their

paths through the memory hierarchy change

GETS A

HIT

Core 0

LLC

Mem

GETS A

MISS

1 2

Core1 Core 0

LLC

Mem

GETS A

HIT

GETS A

MISS

2 1

Core 1

Characterizing Interference
18

Path-altering interference

If we simulate two accesses out of order, their

paths through the memory hierarchy change

Path-preserving interference

If we simulate two accesses out of order, their

timing changes but their paths do not

GETS A

HIT

Core 0

LLC

Mem

GETS A

MISS

1 2

Core1 Core 0

LLC

Mem

GETS A

HIT

GETS A

MISS

2 1

Core 1

GETS B

HIT

Core 0

LLC (blocking)

Mem

GETS A

MISS

1 2

Core 1

3 4

5

6

Characterizing Interference
18

Path-altering interference

If we simulate two accesses out of order, their

paths through the memory hierarchy change

Path-preserving interference

If we simulate two accesses out of order, their

timing changes but their paths do not

GETS A

HIT

Core 0

LLC

Mem

GETS A

MISS

1 2

Core1 Core 0

LLC

Mem

GETS A

HIT

GETS A

MISS

2 1

Core 1

GETS B

HIT

Core 0

LLC (blocking)

Mem

GETS A

MISS

1 2

Core 1

3 4

5

6
GETS B

HIT

Core 0

LLC (blocking)

Mem

GETS A

MISS

2 1

Core 1

4 5

6

3

Characterizing Interference
19

 Accesses with path-altering interference with barrier
synchronization every 1K/10K/100K cycles (64 cores):

1 in10K accesses

Characterizing Interference
19

 Path-altering interference extremely rare in small intervals

 Accesses with path-altering interference with barrier
synchronization every 1K/10K/100K cycles (64 cores):

1 in10K accesses

Characterizing Interference
19

 Path-altering interference extremely rare in small intervals

 Strategy:

 Simulate path-preserving interference faithfully

 Ignore (but optionally profile) path-altering interference

 Accesses with path-altering interference with barrier
synchronization every 1K/10K/100K cycles (64 cores):

1 in10K accesses

Bound-Weave Parallelization
20

 Divide simulation in small intervals (e.g., 1000 cycles)

 Two parallel phases per interval: Bound and weave

Bound-Weave Parallelization
20

 Divide simulation in small intervals (e.g., 1000 cycles)

 Two parallel phases per interval: Bound and weave

Bound phase: Find paths

Weave phase: Find timings

Bound-Weave Parallelization
20

 Divide simulation in small intervals (e.g., 1000 cycles)

 Two parallel phases per interval: Bound and weave

Bound-Weave equivalent to PDES

for path-preserving interference

Bound phase: Find paths

Weave phase: Find timings

Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Host Thread 0

Host Thread 1
Host

Time

Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Parallel simulation until cycle

1000, gather access traces

Host Thread 0

Host Thread 1
Host

Time

Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Parallel simulation until cycle

1000, gather access traces

Domain 0

Domain 1

Weave Phase: Parallel event-driven simulation of

gathered traces until actual cycle 1000

Host Thread 0

Host Thread 1
Host

Time

Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Parallel simulation until cycle

1000, gather access traces

Domain 0

Domain 1

Weave Phase: Parallel event-driven simulation of

gathered traces until actual cycle 1000

Feedback: Adjust core cycles

Host Thread 0

Host Thread 1
Host

Time

Bound-Weave Example
21

 2-core host simulating
4-core system

 1000-cycle intervals

 Divide components

among 2 domains Core 1

L1I

Core 0 Core 2 Core 3

L1D L1I L1D L1I L1D L1I L1D

Mem Ctrl 0 Mem Ctrl 1

L2 L2 L2 L2

L3 Bank 0 L3 Bank 1 L3 Bank 2 L3 Bank 3

Domain 0 Domain 1

Core 0

Core 3

Core 1

Core 2

Bound Phase: Parallel simulation until cycle

1000, gather access traces

Domain 0

Domain 1

Weave Phase: Parallel event-driven simulation of

gathered traces until actual cycle 1000

Feedback: Adjust core cycles

Bound Phase

(until cycle 2000)

…
Core 3

Core 2 Core 0

Core 1Host Thread 0

Host Thread 1
Host

Time

Example: Bound Phase
22

 Host thread 0 simulates core 0, records trace:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

 Edges fix minimum latency between events

 Minimum L3 and main memory latencies (no interference)

20

20

20

3030 100

30 120

20
20 20

40

Example: Weave Phase
23

 Host threads simulate components from domains 0,1

 Host threads only sync when needed

 e.g., thread 1 simulates other events (not shown) until cycle 110, syncs

 Lower bounds guarantee no order violations

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1

Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1

Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss +50 cycles

Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss +50 cycles

170

Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss +50 cycles

280

170

Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss +50 cycles

280

290

300

170

Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss +50 cycles

280

290

300

320

170

Example: Weave Phase
24

 Delays propagate as events are simulated:

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

Core0 @ 290

L3b3 @ 270

HIT

20

20

20

3030 100

30 120

20

20 20

40

Host Thread 0

Host Thread 1
Row miss +50 cycles

280

290

300

320

340

170

Bound-Weave Scalability
25

 Bound phase scales almost linearly

 Using novel shared-memory synchronization protocol (later)

 Weave phase scales much better than PDES

 Threads only need to sync when an event crosses domains

 A lot of work shifted to bound phase

Bound-Weave Scalability
25

 Bound phase scales almost linearly

 Using novel shared-memory synchronization protocol (later)

 Weave phase scales much better than PDES

 Threads only need to sync when an event crosses domains

 A lot of work shifted to bound phase

 Need bound and weave models for each component, but

division is often very natural

 e.g., caches: hit/miss on bound phase; MSHRs, pipelined

accesses, port contention on weave phase

Bound-Weave Take-Aways
26

 Minimal synchronization:

 Bound phase: Unordered accesses (like lax)

 Weave: Only sync on actual dependencies

Bound-Weave Take-Aways
26

 Minimal synchronization:

 Bound phase: Unordered accesses (like lax)

 Weave: Only sync on actual dependencies

 No ordering violations in weave phase

Bound-Weave Take-Aways
26

 Minimal synchronization:

 Bound phase: Unordered accesses (like lax)

 Weave: Only sync on actual dependencies

 No ordering violations in weave phase

 Works with standard event-driven models

 e.g., 110 lines to integrate with DRAMSim2

Multithreaded Accuracy
27

 23 apps: PARSEC, SPLASH-2, SPEC OMP2001, STREAM

 11.2% avg perf error (not IPC), 10/23 within 10%

 Similar differences as single-core results

1024-Core Performance
28

 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)

 Results for the 14/23 parallel apps that scale

1024-Core Performance
28

 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)

 Results for the 14/23 parallel apps that scale

200 MIPS hmean

41 MIPS hmean

1024-Core Performance
28

 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)

 Results for the 14/23 parallel apps that scale

200 MIPS hmean

41 MIPS hmean

~100-1000x faster

1024-Core Performance
28

 Host: 2-socket Sandy Bridge @ 2.6 GHz (16 cores, 32 threads)

 Results for the 14/23 parallel apps that scale

200 MIPS hmean

41 MIPS hmean

~5x between least and

most detailed models!

~100-1000x faster

Bound-Weave Scalability
29

Bound-Weave Scalability
29

10.1-13.6x speedup @ 16 cores

Outline
30

 Introduction

 Detailed DBT-accelerated core models

 Bound-weave parallelization

 Lightweight user-level virtualization

Lightweight User-Level Virtualization
31

 No 1Kcore OSs

 No parallel full-system DBT

ZSim has to be

user-level for now

Lightweight User-Level Virtualization
31

 No 1Kcore OSs

 No parallel full-system DBT

 Problem: User-level simulators limited to simple workloads

 Lightweight user-level virtualization: Bridge the gap with

full-system simulation

 Simulate accurately if time spent in OS is minimal

ZSim has to be

user-level for now

Lightweight User-Level Virtualization
32

 Multiprocess workloads

 Scheduler (threads > cores)

 Time virtualization

 System virtualization

 Simulator-OS deadlock
avoidance

 Signals

 ISA extensions

 Fast-forwarding

ZSim Limitations
33

 Not implemented yet:

 Multithreaded cores

 Detailed NoC models

 Virtual memory (TLBs)

ZSim Limitations
33

 Not implemented yet:

 Multithreaded cores

 Detailed NoC models

 Virtual memory (TLBs)

 Fundamentally hard:

 Systems or workloads with frequent path-altering interference

(e.g., fine-grained message-passing across whole chip)

 Kernel-intensive applications

Summary
34

 Three techniques to make 1Kcore simulation practical

 DBT-accelerated models: 10-100x faster core models

 Bound-weave parallelization: ~10-15x speedup from

parallelization with minimal accuracy loss

 Lightweight user-level virtualization: Simulate complex

workloads without full-system support

 ZSim achieves high performance and accuracy:

 Simulates 1024-core systems at 10s-1000s of MIPS

 Validated against real Westmere system, avg error ~10%

Simulator Organization

35

Main Components
36

Harness

Driver
System

Initialization

Config

Core timing

models

Memory system

timing models

Global

Memory

User-

level

virtualiz

ation

Stats

ZSim Harness
37

 Most of zsim implemented as

a pintool (libzsim.so)

 A separate harness process

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

ZSim Harness
37

 Most of zsim implemented as

a pintool (libzsim.so)

 A separate harness process

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

./build/opt/zsim test.cfg

ZSim Harness
37

 Most of zsim implemented as

a pintool (libzsim.so)

 A separate harness process

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

ZSim Harness
37

 Most of zsim implemented as

a pintool (libzsim.so)

 A separate harness process

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

Global Memory

ZSim Harness
37

 Most of zsim implemented as

a pintool (libzsim.so)

 A separate harness process

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

Global Memory

ZSim Harness
37

 Most of zsim implemented as

a pintool (libzsim.so)

 A separate harness process

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

process0 = {
command = “ls”;

};

process1 = {
command = “echo foo”;

};

…

Global Memory

ZSim Harness
37

 Most of zsim implemented as

a pintool (libzsim.so)

 A separate harness process

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

process0 = {
command = “ls”;

};

process1 = {
command = “echo foo”;

};

…

Global Memory

pin –t libzsim.so -- ls

ZSim Harness
37

 Most of zsim implemented as

a pintool (libzsim.so)

 A separate harness process

(zsim) controls simulation

 Initializes global memory

 Launches pin processes

 Checks for deadlock

zsim

./build/opt/zsim test.cfg

process0 = {
command = “ls”;

};

process1 = {
command = “echo foo”;

};

…

Global Memory

pin –t libzsim.so -- ls

pin –t libzsim.so – echo foo

Global Memory
38

 Pin processes communicate through a shared memory

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Global Memory
38

 Pin processes communicate through a shared memory

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Process 0

address space

Program code

Local heap

Global heap

libzsim.so

Global Memory
38

 Pin processes communicate through a shared memory

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Process 0

address space

Program code

Local heap

Global heap

libzsim.so

Process 1

address space

Program code

Local heap

Global heap

libzsim.so

Global Memory
38

 Pin processes communicate through a shared memory

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Process 0

address space

Program code

Local heap

Global heap

libzsim.so

Process 1

address space

Program code

Local heap

Global heap

libzsim.so

Global Memory
38

 Pin processes communicate through a shared memory

segment, managed as a single global heap

 All simulator objects must be allocated in the global heap

Process 0

address space

Program code

Local heap

Global heap

libzsim.so

Process 1

address space

Program code

Local heap

Global heap

libzsim.so

Global heap and

libzsim.so code in

same memory

locations across all

processes Can

use normal pointers

& virtual functions

Global Memory Allocation Idioms
39

 Globally-allocated objects: Inherit from GlobAlloc

class SimObject : GlobAlloc { …

Global Memory Allocation Idioms
39

 Globally-allocated objects: Inherit from GlobAlloc

class SimObject : GlobAlloc { …

 STL classes that allocate heap memory: Use g_stl variants

g_vector<uint64_t> cacheLines;

Global Memory Allocation Idioms
39

 Globally-allocated objects: Inherit from GlobAlloc

class SimObject : GlobAlloc { …

 STL classes that allocate heap memory: Use g_stl variants

g_vector<uint64_t> cacheLines;

 C-style memory allocation (discouraged):

gm_malloc, gm_calloc, gm_free, …

Global Memory Allocation Idioms
39

 Globally-allocated objects: Inherit from GlobAlloc

class SimObject : GlobAlloc { …

 STL classes that allocate heap memory: Use g_stl variants

g_vector<uint64_t> cacheLines;

 C-style memory allocation (discouraged):

gm_malloc, gm_calloc, gm_free, …

 Declare globally-scoped variables under struct zinfo

Initialization Sequence
40

Harness

1

Initialization Sequence
40

Harness

1

Config

2

Initialization Sequence
40

Harness

1

Config

2

Global

Memory

3

Initialization Sequence
40

Harness

1

Config

2

Global

Memory

3

Driver

4

Initialization Sequence
40

Harness

1

Config

2

Global

Memory

3

Driver

4

User-

level

virtualiz

ation

5

Initialization Sequence
40

Harness

1

Config

2

Global

Memory

3

Driver

4
System

Initialization

6

User-

level

virtualiz

ation

5

Initialization Sequence
40

Harness

1

Config

2

Global

Memory

3

Driver

4
System

Initialization

6

User-

level

virtualiz

ation

5

Stats

7

Initialization Sequence
40

Harness

1

Config

2

Global

Memory

3

Driver

4
System

Initialization

6

User-

level

virtualiz

ation

5

Stats

7

Memory system

timing models

8

Initialization Sequence
40

Harness

1

Config

2

Global

Memory

3

Driver

4
System

Initialization

6

User-

level

virtualiz

ation

5

Stats

7

Memory system

timing models

8

Core timing

models

9

Thanks For Your Attention!

Questions?

Backup Slides

Single-Thread Accuracy: Traces
116

Single-Thread Accuracy: Traces
117

Motivation
118

 Timeline:

 2008: Decide to study 1K-core systems for my Ph.D. thesis

 2009: Try every sim out there, none fast enough

 Got M5+GEMS to 512 threads [ASPLOS 2010], barely usable

 2010: Start developing ZSim [ZCache, MICRO 2010]

 2011: Make ZSim flexible, scalable, develop detailed models, other
groups start using it

 2012: Let’s publish a paper and release it…

 ZSim design approach:

 Make judicious tradeoffs to achieve detailed 1K core sims efficiently

 Verify that those tradeoffs result in minor inaccuracies

 Disclaimer: Not a silver bullet & tradeoffs may not be accurate for your
target system; you should validate the tradeoffs!

Instruction-Driven Timing Models
119

 Cycle/event-driven models: Simulate all stages cycle by cycle

 Instruction-driven models: Simulate all stages at once for each ins/uop

 Each stage has separate clocks

 Ordered queues (FetchQ, UopQ, LoadQ, StoreQ, ROB) model feedback
loops between stages

 Issue window tracks cycles each FU is used to determine dispatch cycle

 Even with OOO, accurate if:

1. IW prioritizes older uops (OK)

2. uop exec times not affected by newer uops
(OK except mem uops, ignore for now)

F
e
tc

h

D
e
co

d
e

Is
su

e

O
O

O

Ex
e
c

C
o
m

m
it

 Instr code drives directly

DBT can accelerate better

 Harder to develop

DBT-based Acceleration
120

 With instruction-driven models, can push most overheads into
instrumentation phase

mov -0x38(%rbp),%rcx

lea -0x2040(%rbp),%rdx

add %rax,%rbx

mov %rdx,-0x2068(%rbp)

cmp $0x1fff,%rax

jne 40530a

Load(addr = -0x38(%rbp))

mov -0x38(%rbp),%rcx

lea -0x2040(%rbp),%rdx

add %rax,%rdx

mov %rdx,-0x2068(%rbp)

Store(addr = -0x2068(%rbp))

cmp $0x1fff,%rax

BasicBlock(DecodedBBL)

jne 10840530a

Basic block descriptor

Type Src1 Src2 Dst1 Dst2 Lat PortMsk

Load rbp rcx 001000

Exec rbp rdx 3 110001

Exec rax rdx rdx rflgs 1 110001

StAddr rbp S0 1 000100

StData rdx S0 000010

Exec rax rip rip rflgs 1 000001

Instrumented code

Original code (1 basic block)

…

Predecoder/decoder delays

Instruction to uop fission

Instruction fusion

Uop dependencies, latency, ports

Parallelization Techniques
121

 Parallel Discrete Event Simulation (PDES):

Core 1Core 0

Mem 0

L3 Bank 0 L3 Bank 1

Thread 0 Thread 1 Divide components across threads

Execute events from each component

maintaining illusion of full order

Pessimistic PDES: Keep skew between

threads below inter-component latency
5 10

15 15

10 5

Optimistic PDES: Speculate & roll back

on ordering violations

 Simple

 Excessive sync

 Less sync

 Heavyweight

 Lax synchronization: Allow skews above inter-component latencies,

tolerate ordering violations
 Scalable

 Inaccurate

 Accurate

 Scales poorly

Bound-Weave Parallelization
122

 Divide simulation in small intervals (e.g., 1000 cycles)

 Two parallel phases per interval: Bound and weave

 Bound phase:

 Simulate each core independently using instruction-driven models

 Record paths of all accesses through the memory hierarchy

 Uncore models assume no interference, use minimum response time
for all accesses puts lower bound on all events
 e.g., for a main memory access: uncontended caches, buses, row hit

 Weave phase:

 Perform parallel event-driven simulation of recorded events

 Leverage prior knowledge of events to scale

Bound-Weave equivalent to PDES

for path-preserving interference

Find paths

Find timings

Bound-Weave Example
123

 Weave phase: Events spread across two threads

 Crossing events () to only synchronize when needed

 e.g., thread 1 reaches cycle 110, “L3b0 @ 80” not done
checks thread 0’s progress, requeues itself later

 Other synchronization-avoiding mechanisms in paper

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ Mem0 @ 130

WBACK

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

L3b0 @ 250

FREE MSHR

L3b3 @ 270

HIT

Core0 @ 290

Thread 0 Thread 1

Domain 0

 Events are lower-bounded No ordering violations

 e.g., 110 lines of code to integrate with DRAMSim2

Bound-Weave Example
124

 Delays propagate across crossings:

Works with standard event-driven models!

L3b1 @ 50

HIT

Core0 @ 30 Core0 @ 60

L3b0 @ 80

MISS

Mem1 @ 110

READ Mem0 @ 130

WBACK

Core0 @ 90 Core0 @ 250

L3b0 @ 230

RESP

L3b0 @ 250

FREE MSHR

L3b3 @ 270

HIT

Core0 @ 290

Thread 0 Thread 1

Domain 0

Row miss +50 cycles

280

290

300

320

350

